
VBENGINE 1.0
Working Model

Copyright (C) - 1993
by

Douglas A. Bebber
All rights reserved

Table of Contents

Introduction .. 3

Database Fundamentals ... 6

VBENGINE Data Structures .. 11

VBENGINE Example Programs ... 16

VBENGINE Function Reference .. 28

VBENGINE / Paradox Engine Error Codes .. 57

Introduction
2

What is the VBENGINE?

 The VBENGINE product is a Microsoft Windows compatible dynamic link library
(VBENGINE.DLL) designed to provide Visual Basic programmers with a sophisticated,
yet easy-to-use tool for building database management applications. Using
VBENGINE, Visual Basic programmers can build sophisticated multi-user, network
compatible database management applications and distribute the VBENGINE.DLL
with those applications on an unlimited, royalty-free basis. The VBENGINE.DLL
product presents the Visual Basic programmer with a simple, easy-to-use interface to
Borland International's Paradox Engine. The Paradox Engine is a complete multi-user,
network compatible API written in the C programming language. The VBENGINE
product is a simplified object-oriented interface to the Paradox Engine specifically
designed for Visual Basic Programmers. VBENGINE (version 1.0) is compatible with
Visual Basic 1.0 and 2.0 and runs in Microsoft Windows 3.0 as well as Microsoft
Windows 3.1.

 The VBENGINE (version 1.0) working model product itself contains a rather
extensive subset of the full-featured VBENGINE product (available only to registered
users). Even though it is a subset, it has all the essential functions necessary to
design full-featured database applications. As a matter of fact, you can design a very
sophisticated package in its entirety using only the working model. I included this
functionality in the working model so you could better evaluate the product and its
capabilities before registering. However, you are not allowed to distribute
applications designed around the working model for profit. You must first obtain a
registered copy of the VBENGINE product before you are allowed to distribute the
VBENGINE with your commercial applications (this includes Shareware products).

 The VBENGINE working model has been called a "NagWare" product. There is a
pop-up window in the working model that constantly reminds users that the product
is for pre-registration evaluation only and cannot be distributed as part of any
product. It is displayed throughout portions of the calling programs code. When you
register your copy of the VBENGINE, you get a version of the VBENGINE.DLL without
the "NagWare" pop-up window suitable for product distribution.

 This documentation describes the VBENGINE product. It specifically describes the
VBENGINE (version 1.0) working model which is currently being distributed over
computer bulletin board services in the United States of America. The VBENGINE
(version 1.0) working model is a Shareware product, it is copyrighted and I reserve all
rights to it. You may distribute it to others, through any means, as long as you do not
charge others for the product itself, or alter the product in any way.

Douglas A. Bebber
March 31, 1993

3

How to Register

 You can obtain a registered copy of the VBENGINE (version 1.0) product for only
$49.95. The package includes:

- A full-featured VBENGINE.DLL (access to all functions minus the "NagWare" pop-up).

- VBENGINE users manual complete with example Visual Basic programs and source
code.

- VBENGINE Technical Reference Manual describing all VBENGINE functions in detail.

- Unlimited, royalty-free rights to distribute the VBENGINE.DLL with your applications.

- Notice of product updates.

- Free telephone technical support.

To register send check or money order to:

Douglas A. Bebber
1834 37th Street
Rock Island, Illinois 61201
(309) 786-9602

(make notes payable to: Douglas A. Bebber)

Trademarks

Visual Basic and Windows are registered trademarks of Microsoft Corporation.
Borland C++ is a registered trademark of Borland International.
PARADOX is a registered trademark of Borland International.
4

PARADOX Engine is a registered trademark of Borland International.

VBENGINE was written in Borland C++ (version 3.0) by Douglas A. Bebber. Address inquiries
and bug reports (preferably Dr. Watson along with a listing of the suspected code) to

Douglas A. Bebber

Internet mail address:
bebberd@rr.bhc.edu

U.S. Postal Address:
1834 37th Street
Rock Island, Illinois 61201

Testing

 VBENGINE was written and tested on a variety of 286, 386, and 486 PCs. Record and file
locking functions were tested and verified on Lantastic and Novell based ethernet LANs as well
as in the standard Windows environment between multiple applications.

If your LAN hardware or software differs significantly and VBENGINE does not run properly, I
would appreciate a Dr. Watson UAE (General Protection Fault) report sent to my Internet
address. Please describe your operating environment in detail and include a listing of your
CONFIG.SYS and WIN.INI files.

Note: VBENGINE based Visual Basic programs will not be able to execute properly if
VBENGINE.DLL and PXENGWIN.DLL files are not in directories included in your MSDOS PATH
statement.

Note: VBENGINE will only execute in Windows Standard and 386 Enhanced modes.

Compatability and New Releases

 The VBENGINE (version 1.0) is compatible with Borland International's Paradox Engine
version 2.0. VBENGINE (version 1.5) is now in it's final test phase and will be released soon
(expecting documentation to be complete and ready for release in June 1993). The VBENGINE
(version 1.5) will contain all the functionality of the version 1.0 product (existing code will be
compatible) and will contain multi-media enhancements such as storing Windows bitmap,
and .WAV files in databases for Visual Basic's multi-media enhancements. Registered users of
the VBENGINE 1.0 product will receive a free upgrade to the version 1.5 product when it is
released (free upgrade offer expires June 1, 1993).

5

Database Fundamentals

What is a Database?

 For our purposes we will limit this discussion to the world of IBM PC compatible
database management systems. Specifically, relational database management
systems designed around Borland International's Paradox Engine and the user
friendly Visual Basic API (the VBENGINE).

 In this context, we can say that a database consists of one or more related files
(tables in VBENGINE terminology) that hold information in an orderly, efficient
manner. The database tables consist of several rows and columns into which,
information is placed. The columns are generally referred to as "Fields" and the rows
as "Records".

6

 We will not delve into a lot of theoretical concepts in this section, rather we will
present concepts in order to promote a general understanding of database principles.
Just enough to give the beginner a kick-start into the world of database
programming. (the VBENGINE User's manual covers a little more theory and provides
references to more extensive texts.)

 To illustrate the principles involved in simple database design we will present a
model which we will build on in the VBENGINE Programming Examples section of this
manual. To start, we will design a simple database which will hold information
concerning the customers of a small business owner. We will design the database
from scratch and will detail its structure in this section.

 Our small business owner tells us that he would like to maintain a certain set of
facts concerning each one of his customers. Specifically, he would like to have the
following information concerning each customer in his database:

1.) The customer's Name
2.) The customer's street address
3.) The customer's city of residence
4.) The state that the customer lives in
5.) The customers zip code
6.) The customer's telephone number

 This listing of required information is the first essential step in the design of
database systems. It is absolutely essential that you compile the needed sets of
information that must be maintained. In the world of database programming this step
is called "compiling a data dictionary". Over time additional items of information get
added to the list. Sometimes, certain items need to be broken down into several
smaller parts so a more detailed or "higher resolution" picture can emurge.

 The items listed above are the essential pieces of information our small business
owner requires for each of his customers. Each piece of information is needed for
every customer. If we think of this conceptually, the required information expands in
only one direction. Every time we compile the required set of information for a
customer our information grows. Its not that we get more information or details
concerning the customer, but that we get more customers with the same set of
information (Name, Address, etc,).

 In a computer-based database system we generally define a set of data that we
would like to obtain for each new entry into the database system. This set of
information is called the database field set, consisting of a finite set of fields. The six
items listed above are our database fields. The entries in our database, each
consisting of the same set of fields, are our records. Each and every one of our
customers constitute an individual record in our data base. As you can see, our set of
required fields should remain more or less constant. But we hope that our customer
base continues to expand. In general databases expand in one direction, in our
terms, horizontal, record expansion.
7

 Given the above, we can now look at the structure of our database diagramed
below (fields vertically, records horizontally):

Name Address City State Zip phone

Bob Smith 1111 3rd St. Denver CO 11276 323-
998-9987
June Day 220 8th Ave Moline IL 61265 309-762-1100
Tom Leaky 11 3rd St. Milan IL 61201 309-753-0098

etc.

 It starts out just that simple. A Visual Basic program to maintain just this sort of
minimal database would consist of nothing more than a form consisting of Labels and
Text boxes designed to aid the user in data entry and a few buttons to facilitate
database functions. The DEMO1 example program is a close approximation of this
sort of application.

Database Field Types
 Each field in a database has a corresponding data type. The available field types in
the VBENGINE (version 1.0) release are listed below:

Alphanumeric (A) field type permits the full ASCII character set (except ASCII 0)
and is used for entry of string data types. Fields of this type are specified as Axxx,
where the xxx represents the maximum length of the field in characters. For
example, if you were to create a field in a table which is intended to hold a maximum
of 50 characters you would specify the field as an A50.

Number (N) and currency ($) field types permit up to 15 significant digits
(including the decimal point) in the range of real numbers from ±10-307 to ±10307.
Number field values which are greater than 15 significant digits are rounded and
stored in scientific notation. Currency field values are stored in a default predefined
format.

Short Number (S) field types permit values in the range of signed integers. (-
32,767 to 32,767).

Date (D) field types permit any vaild dates between January 1, 100 A.D. to
December 31, 9999. Date values are stored as long integers which represent the
number of days since January 1, A.D.

 VBENGINE programming involves handling database field values as strings only!
Regardless of the actual data type in the database file. This is mandated by the
8

VBENGINE data structures (Visual Basic User Defined Types). VBENGINE programmers
receive field values from data table files as String values and write database field
values to the VBENGINE API as String values regardless of the actual field value type
present in the database table file. The VBENGINE automatically performs data type
conversions based on the data type of the field in the database table file. This data
type conversion process is transparent to the Visual Basic programmer and provides
a much simpler interface to database programming.

Indexes and Searching

 Database files generally have some sort of indexing scheme in order to facilitate
quick searching capabilities. As stated previously, the VBENGINE API (version 1.0)
works with Paradox database files. Paradox database files have the capability of
supporting multiple indexes. These database indexes are classified into two
categories:

Primary indexes
Secondary indexes (maintained and non-maintained)

 The Primary index is the default index used in database searches, however, you
are able to create and use secondary indexes in your applications. In these database
indexes, you specify key fields for the index. The key fields are the fields you wish to
search on or order data by (Primary indexes must have all key fields one right after
the other with the first key field being the first field in the database) . Primary indexes
can have multiple key fields.

 Just like searching for specific topics in a book, searching a database for specific
information is done much more quickly when there is an index present. Indexes
order data viewed in a database table. For example, if you have a database table
with a single key field of type Number (N) in the Primary index. Database records
viewed through that index will be ordered sequentially in ascending order based on
the numeric values present in the key field i.e., 0,1,2,3,4,5, etc.

 Two of the example programs included in this working model package show how to
use indexes. The MAKEDB example program shows how to create an index. The
DEMO2 example program shows how to search a database using a primary index
(see the VBENGINE Example Programs section in this manual).

 Database indexing and searching are some of the more complicated concepts
when first learning about database systems. VBENGINE programmer's who may need
more details concerning indexes, searching via indexes, general searching
techniques, and querying database tables should obtain a copy of the VBENGINE
User's Manual.

9

Multi-User Environments

 The VBENGINE API can be used in Local Area Network environments consisting of
multiple users sharing the same database. The VBENGINE working model comes with
file and record locking facilities. VBENGINE API functions specific to network file
sharing environments are LockRecord, UnlockRecord, LockFile, UnlockFile,
GetUserName, etc.

 For a complete description of the concepts intoduced in this section and
information on other VBENGINE database related information please see the
VBENGINE User's Manual. For specific information on the Paradox database file
structure and concepts relevant specifically to the Pardox Engine see the Paradox
Engine User's Guide available from Borland International.

10

VBENGINE Data Structures

 The VBENGINE data structures are Visual Basic User Defined Types. They are
defined in the VBENGINE.TXT file. The VBENGINE.TXT file's contents must be
11

ported into a Visual Basic program's Global Module in order to use the VBENGINE for
database programming. The VBENGINE.BAS file is a module which contains the
VBENGINE.TXT file's contents.

 Understanding the VBENGINE DataTable User Defined Type is the key to success
in VBENGINE programming. The data structures (User Defined Types) discussed in
this document are the bare minimum VBENGINE data types. More complex data
structures can be built upon these core data structures to provide more sophisticated
structures for large complex programming requirements. Generally the more
sophisticated structures require Microsoft Visual Basic 2.0 as your programming
platform (since it provides for arrays in user defined types). Extending VBENGINE's
data structures is covered in the VBENGINE Technical Reference Manual.

 During the following discussion conerning the data structures, the VBENGINE User
Defined Types are referred to as objects. The VBENGINE architecture is very similar to
the structure of a similar product designed by the author of the VBENGINE (a
database engine class library) designed for C++ programmers in which databases
are manipulated via DataTable objects.

 The VBENGINE User Defined Types are described in this section, for details on how
to use these structures in your Visual Basic programs see the VBENGINE Sample
Programs section.

The DataTable Object

12

 VBENGINE programmers work with databases through DataTable objects. The DataTable
object is a Visual Basic User Defined Type which conceptually simplifies database programming.

 As you can see in Figure 1.0, the DataTable object is made up of three other objects:

- Table object
- Record object
- Field object

 Each of these embedded objects consist of a few data members:

Table: Record: Field:
TableName SearchMode FieldName
IndexID KeySearch
FieldType
SaveEveryChange FieldValue

 In this section we will examine the DataTable object in detail. In the following section
VBENGINE Example Programs we will illustrate how to use the DataTable object to manipulate
databases using the Visual Basic programming language.

Table Object

13

 The DataTable object holds database table specific information. It contains information
concerning the table only. The Table object has three data members:

TableName is an ASCII string with a length of 255 characters. This string holds the name of a
database table, including any MSDOS PATH specifier. Database file names placed in this data
member must not include a file extension.

IndexID is an integer data member which holds the identification of the index to be used with the
database table (specified in the TableName data member).

SaveEveryChange is an integer data member which determines how database changes are
saved to disk files. Database changes may be directly written or buffered.

Record Object

 The Record object holds database record specific information. The majority of the record
structures are internal to the database engine. The Record object has two data members:

SearchMode is an integer data member which specifies the search mode used in database
searches. It's scope is in relation to it's parent DataTable variable only (it does not affect other
DataTable variables, every DataTable variable has it's own table search mode data member).
The SearchMode data member can have any one of three valid values:

SEARCHFIRST
SEARCHNEXT
CLOSESTRECORD

KeySearch is an integer data member which specifies what portion of the databases primary
index to use for index based searches.

Field Object

14

 The Field object holds database field specific information. The Field object has three data
members:

FieldName is an ASCII string with a length of 25 characters. This string holds the name of the
target database field.

FieldType is an ASCII string with a length of 30 characters. This string holds the data type of the
target database field.

FieldValue is an ASCII string with a length of 255 characters. This string holds the value of the
target database field.

 To use DataTable objects and the library of functions that operate on DataTable objects you
must include the VBENGINE.TXT file in your Visual Basic program's GLOBAL MODULE. The
DataTable objects are defined in that file. Some additional data members for the Table, Record,
and Field objects are defined in that file, however, those that are not listed above are for
VBENGINE's internal use only! You must never alter these data members because they are
Visual Basic links to the data base engine environment. Modifying these "Handle" data members
will cause unexpected results!

 All database programming capabilities (with one exception), are provided to the Visual Basic
programmer through the use of DataTable objects and the functions that operate on those
objects. The one exception is the creation of new database tables. To create a new database
table you must use the NewTable object (NewTable Type). The NewTable type is defined in the
VBENGINE.BAS file. The NewTable Type and the CreateTable function are described in the
Function Reference. An example covering table creation is present in the next section.

VBENGINE Example Programs

15

 In this section detailed examples of how to use the VBENGINE in the Visual Basic
programming language will be presented. Details concerning how to use the VBENGINE API to
read and write data between Visual Basic programs and database files are covered in detail.
Several example programs have been sent along as part of the working model distribution file set.
These example programs are discussed here in detail.

 This section is a subset of the same section in the registration copy of the VBENGINE User's
Manual. There is not as much information concerning complex searching, relational models, and
querying present here. There is however, sufficient information to get one started in VBENGINE
programming. Specific examples of how to search with an index and how to search on a field are
presented here. Also an example is given on how to fill in Visual Basic List and Combo boxes with
data from a database table using the VBENGINE. For extensive information concerning database
indexing and searching please see the registration copy of the VBENGINE User's Manual.

Installation Note: The example programs presented in this section (including the Visual Basic
source code programs included with the working model) expect the files CUSTOMER.DB and
CUSTOMER.PX files to be in the C:\ directory. If you wish to change this location do so in the
example programs source code.

DEMO1

 This is the first example program. It is very simple and illustrates a few basic VBENGINE
programming concepts. It can be found in the working model distribution file set. The files
DEMO1.MAK, VBENGINE.BAS, and DEMO1.FRM constitute the file set for the DEMO1 example
program. The source code is commented. (The database table and index used in the DEMO1
example program were created using the MAKEDB.MAK project also included in the working
model file distribution and discussed at the end of this section).

 The DEMO1 example program is a very simple illustration of how easily a database application
can be generated in Visual Basic using VBENGINE. The DEMO1 example program consists of
one database table "C:\CUSTOMER.DB" with an index file "C:\CUSTOMER.PX" . The structure
of the C:\CUSTOMER.DB database is shown below.

Field Type
--

Name A50
Address A50
City A30
State A2
Zip A10
Phone A14

 The DEMO1.FRM form was designed to be a window into the database. Using this form, users
can view the customer data in the database on a record-by-record basis. There is a field on the
form for every field in the database. Six Text controls are used to hold database field values, and
six Label controls are used to label those fields for the users benefit. There are seven push button
controls on the form for database manipulation:

16

- Top moves to the first record in the database.
- Bottom moves to the last record in the database
- Previous moves to the previous record in the database
- Next moves to the next record in the database
- Update updates the current record in the database
- Insert inserts the form data as a record in the database
- Delete deletes the current record from the database

 There are two utility push button controls on the form:

- Clear clears all information from the form (blank form)
- Quit terminates the demo program

 We will start the description of this example application in the DEMO1 form's general
declarations section. Here a variable of type DataTable is declared as:

Dim Customer As DataTable

 This line of code creates a DataTable object, which we will refer to by name as "Customer",
that will allow us to manipulate the database through the VBENGINE API.

 We next see the following code in the Forms load procedure:

'Initialize VBENGINE so that database capabilities are enabled.
'Do this by calling OpenEngine with a string representing the program's

'name.

result = OpenEngine("Visual Basic - VBENGINE DEMO1")

'Now put the database table file name (C:\CUSTOMER.DB) in the
'Customer DataTable object:

Customer.Table.TableName = "C:\CUSTOMER"

'We will use the tables master index
Customer.Table.IndexID = MASTERINDEX

'We will buffer data changes
Customer.Table.SaveEveryChange = FALSE

'Now open the table
result = OpenTable(Customer)

'Now read in the data from the first record and place it in our form.
FillForm

 This is only six lines of code! In this six lines of code we have:

- Initialized the database engine environment.

- Configured our Customer DataTable's Table object to specify what database file we will use,
17

what index(s) we will use, and that we intend to buffer all data changes to the disk.

- Opened the database file

- Called a Visual Basic subroutine FillForm which will read the data from a record and place that
data onto our form.

 Now let's examine the FillForm subroutine to see what it takes to actually read data from the
database and place it in our Visual Basic form. The FillForm subroutine is a subroutine present in
the Form's general section. Here it is in it's entirety:

Sub FillForm ()

 Dim result As Integer 'Used t detect errors.�

 'Get the record from the table
 result = GetRecord(Customer)

 'Now lets get the customers name and put it in our form.

 'Specify what database field we are interested in by placing the name of the field i~ our

'Customer DataTable object:
Customer.Field.FieldName = "Name"

 'Read in the value.
 result = GetField(Customer)

 'Place it in the form.
 Text1.Text = Customer.Field.FieldValue

'Now do the same thing for every field in our form ...

 Customer.Field.FieldName = "Address"
 result = GetField(Customer)
 Text2.Text = Customer.Field.FieldValue

 Customer.Field.FieldName = "City"
 result = GetField(Customer)
 Text3.Text = Customer.Field.FieldValue

 Customer.Field.FieldName = "State"
 result = GetField(Customer)
 Text4.Text = Customer.Field.FieldValue

 Customer.Field.FieldName = "Zip"
 result = GetField(Customer)
 Text5.Text = Customer.Field.FieldValue

 Customer.Field.FieldName = "Phone"
 result = GetField(Customer)
 Text6.Text = Customer.Field.FieldValue
End Sub

18

 Notice that the FillForm subroutine is a general purpose subroutine. It simply reads in a
record's worth of data and displays that data on our form. It does not in any way position the
current record in the database. It reads in the current record and displays the field data on the
form. The point here is that we will use other routines to move around in the database and once
we position to the desired record we will call FillForm to display the information.

 At this point in time, our DEMO1 program has opened up our database engine environment,
opened up our Customer database, read in the first record and displayed the customer data on
our form. The program is now waiting for the user to do something. Let's look at the top row of
push button controls on our form:

Top Bottom Previous Next

 These push button controls are for movement in the database table. They let our DEMO1 user
navigate through our database. Let's take a look at the code attatched to each of these push
button controls:

Sub TopButton_Click ()

Dim result As Integer 'For error detection

'Move to the first record in the table.
result = FirstRecord(Customer)

'Now fill in the form
FillForm

End Sub

Sub BottomButton_Click ()

Dim result As Integer 'For error detection

'Move to the first record in the table.
result = LastRecord(Customer)

'Now fill in the form
FillForm

End Sub

Sub PreviousButton_Click ()

Dim result As Integer 'For error detection

'Move to the first record in the table.
result = PreviousRecord(Customer)

'Now fill in the form
FillForm

End Sub

Sub NextButton_Click ()

Dim result As Integer 'For error detection

19

'Move to the first record in the table.
result = NextRecord(Customer)

'Now fill in the form
FillForm

End Sub

 Pretty simple code! In essence, each one of these positional controls simply calls a single
VBENGINE function call to reposition the database's current record pointer. Then calls the
FillForm subroutine to read the data in and display it on our form.

 Now let's take a look at the Delete push button's code:

Sub DeleteButton_Click ()

Dim result As Integer

'Delete the current record from the data table.
result = DeleteRecord(Customer)

'Now fill in the form.
FillForm

End Sub

 It doesn't take a lot of code to delete a record from the database. When this push button is
clicked by the user, the record is deleted from the database by calling the DeleteRecord function.
When the record is deleted from the database the database engine automatically moves the
database record pointer to the next available record so all we have to do is to call our FillForm
subroutine to display the current database record.

 Now we only have two more database related push button controls to look at Update and
Insert.

Sub UpdateButton_Click ()
Update

End Sub

Sub InsertButton_Click ()
Insert
End Sub

 Thats it for the buttons themselves, now let's look at the two subroutines Update and Insert
each present in the Form's general section:

Sub Update ()
Dim result As Integer 'For error detection

'Here we are transfering information from our form to the table.
'We must first associate a form value with specific fields in our table.

20

'We will make such associations by first specifying the database field of
'interest. Then take the data from the corresponding form field and then
'put the field into the current record.

'Specify the field in the data table.
Customer.Field.FieldName = "Name"

'Place corresponding form data into the database structures FieldValue member.
Customer.Field.FieldValue = Text1.Text

'Now put the field structure into the current record.
result = PutField(Customer)

'Now repeat the process for all form fields.

Customer.Field.FieldName = "Address"
Customer.Field.FieldValue = Text2.Text
result = PutField(Customer)

'Customer.Field.FieldName = "City"
Customer.Field.FieldValue = Text3.Text
result = PutField(Customer)

Customer.Field.FieldName = "State"
Customer.Field.FieldValue = Text4.Text
result = PutField(Customer)

Customer.Field.FieldName = "Zip"
Customer.Field.FieldValue = Text5.Text
result = PutField(Customer)

Customer.Field.FieldName = "Phone"
Customer.Field.FieldValue = Text6.Text
result = PutField(Customer)

'All fields have been placed
'Here we UPDATE the current record in the table.
result = UpdateRecord(Customer)

End Sub

Sub Insert ()
Dim result As Integer

'Here we do the same process found in the Update subroutine.
'(Transfer data from our form fields to the current record)

Customer.Field.FieldName = "Name"
Customer.Field.FieldValue = Text1.Text
result = PutField(Customer)

21

Customer.Field.FieldName = "Address"
Customer.Field.FieldValue = Text2.Text
result = PutField(Customer)

Customer.Field.FieldName = "City"
Customer.Field.FieldValue = Text3.Text
result = PutField(Customer)

Customer.Field.FieldName = "State"
Customer.Field.FieldValue = Text4.Text
result = PutField(Customer)

Customer.Field.FieldName = "Zip"
Customer.Field.FieldValue = Text5.Text
result = PutField(Customer)

Customer.Field.FieldName = "Phone"
Customer.Field.FieldValue = Text6.Text
result = PutField(Customer)

'Here we INSERT the current record in the table.
result = InsertRecord(Customer)

End Sub

 Not to difficult is it! Well that's about it, a few more minor details t cover, like the � Clear push
button. All it does is clear the text values in the Form's Text controls. No VBENGINE functions are
associated with the Clear button. However, an important concept is associated with the Quit
button. Remember way back at the Form's Load subroutine, when we set up the DataTable
object's Table.SaveEveryChange data member to buffer database changes too disk? Well before
we quit the DEMO1 example program we want to make sure that any changes are indeed saved
to the database disk file. This can be done at any time manually by calling the VBENGINE's
FlushBuffers function. But in DEMO1, we simply rely on the CloseTable function to save all
changes before closing the table. We really don't even need to call CloseTable (it's a good
practice) because directly after calling CloseTable we call CloseEngine which cleans-up the
database engine environment before shutting-down. Part of the CloseEngine's clean-up
procedure is to FLUSH all open buffers and to close and release table handles.

 Well that's about it for the DEMO1 example application. Let's take a look at another example
application MAKEDB, which actually created the table and index for the DEMO1 applications
Customer database.

MAKEDB

 The MAKEDB example program is included in the VBENGINE working model distribution file
set. It is an example program which illustrates the steps and procedures necessary to create
database files and indexes. The CUSTOMER.DB and CUSTOMER.PX files used in the example
22

programs DEMO1 - DEMO4 were created with the MAKEDB program. The MAKEDB example
program contains a Visual Basic Form that contains two push button controls - Create Table and
Create Index.

 We will begin the examination of the MAKEDB example program by looking at what it takes to
create a database table file. Let's take a look at the Visual Basic code attatched to the Create
Table push button:

Sub CreateTable_Click ()
'We will declare a variable of type NewTable to create our
'database table

Dim Customer As NewTable
Dim status As Integer 'Used to detect errors.

'Our database will consist of 6 fields and have
'the following structure:
'
' Field Type
'---------------------------------------
' Name A50
' Address A50
' City A30
' State A2
' Zip A10
' Phone A14

'Lets fill in the details of the tables structure here
Customer.TableName = "C:\Customer" 'Specify the database file name
Customer.NFields = 6 'Six fields:Name,Address,City,State,Zip, and Phone

Customer.FieldNames = "Name,Address,City,State,Zip,Phone" 'Field names must be
'separated by

commas

Customer.FieldTypes = "A50,A50,A30,A2,A10,A14" 'Field types must be
'separated by

commas

'Ok, lets go ahead and create the database table using
'VBENGINE function calls

status = OpenEngine("Customer Creation Example") 'Initialize database engine

If (status <> 0) Then 'If an error terminate the program

 MsgBox "Database Engine environment could not be initialized!"
 End

End If

status = CreateTable(Customer) 'Create the database table
23

If (status <> 0) Then 'If an error terminate the program

 MsgBox "Customer database could not be created!"
 End

End If

MsgBox "Customer database was successfully created!" 'Tell the user everything is A OK!

status = CloseEngine() 'Now shut-down the database engine environment

If (status <> 0) Then 'If an error terminate the program

 MsgBox "Database engine could not be shut-down!"
 End

End If

End Sub

 All databases must by created by using variables of type NewTable. Of course any external
utility or program which creates Paradox Tables can be used. But if you are going to create your
own tables using the VBENGINE API you must use the NewTable type. For a detailed
information on the NewTable type and how to create database table files see the CreateTable
function description in the function reference. The above code is commented to explain the steps
necessary to create tables, For more detailed information see the CreateTable function in the
Function Reference section of this manual.

 Now let's look at the code attatched to the CreateIndex push button:

Sub CreateIndex_Click ()
'Here we create a PRIMARY index for the Customer table
'on the Name field. This will be our only key field
'in the Primary index.
'no two customers will be able to have the exact same name
'and the table will be sorted alphabetically

Dim status As Integer 'for error handling

status = OpenEngine("Customer Creation Example") 'Initialize database engine

If (status <> 0) Then 'If an error terminate the program

 MsgBox "Database Engine environment could not be initialized!"
 End

End If

'We will use the AddKey function to create the index
'The table name is "C:\CUSTOMER"
'We want only one key field.
'It is Name, the first field in the table.

24

status = AddKey("C:\CUSTOMER", 1, 1, PRIMARY) 'see the Addkey function in the function
'reference section of the

VBENGINE 'working model manual

If (status <> 0) Then 'If index creation failed

 MsgBox "Failed to create Customer index!"
 End

End If

MsgBox "Customer index successfully created!"

status = CloseEngine() 'Now shut-down the database engine environment

If (status <> 0) Then 'If an error terminate the program

 MsgBox "Database engine could not be shut-down!"
 End

End If

End Sub

 Here again, the code is commented to explain the steps necessary for creating database
indexes. For more information see the AddKey and the RemoveKey function descriptions in the
Function reference section of this manual.

Database Searching Techniques

The DEMO2 Example Program (Searching with an Index)

 The DEMO2 example program shows how you can search a database on an index for a
specific value. The DEMO2 program is a modified version of the DEMO1 example program.
DEMO2 is DEMO1 with one extra subroutine Text1 LostFocus(). The Text1 field is a window into
our Customer database's Name field. The DEMO2 program is structured to accept keyboard input
from the user and when the user types in a customer's name and leaves the Text1 control

25

(LostFocus), the Customer database is searched (on the PRIMARY index) for the name typed in
by the user. If the user typed name is not found, the remaning fields are cleared and we expect to
receive information for a new customer. If the user typed name is found in the database, the
remaing fields on the form are filled in with that customer's information.

 Let's look at the code in the Text1 LostFocus subroutine:

Sub Text1_LostFocus ()

 Dim status As Integer 'For error handling
 Dim NewName As String 'Used to store user typed name, when search fails

'Set up SearchKey criteria:

 Customer.Field.FieldName = "Name" 'We will search on the Name key field
 Customer.Field.FieldValue = Text1.Text 'For this customer name
 Customer.Table.IndexID = MASTERINDEX 'Using our Primary index
 Customer.Record.SearchMode = SEARCHFIRST 'Find the first record meeting the criteria
 Customer.Record.KeySearch = 1

 status = PutField(Customer) 'Submit the field for the search

 status = SearchKey(Customer) 'Start the search

 If (status <> 0) Then 'Search failed to find the customer name
 NewName = Text1.Text 'Store the new customer name in NewName
 ClearButton_Click 'Clear the form
 Text1.Text = NewName 'Put the new name back on the form
 Exit Sub
 End If

 If (status = 0) Then 'Search was successful
 FillForm 'Get customer info and put it in the Form
 End If

End Sub

Note: Searching techniques using the VBENGINE are discussed in greater detail in the
VBENGINE User's Manual.

The DEMO3 Example Program (Searching on a Specific Field)

 The DEMO3 example program shows how you can search a database on an index for a
specific value. The DEMO3 program is a modified version of the DEMO1 example program.
DEMO3 is DEMO1 with one extra subroutine Text1 LostFocus(). The Text1 field is a window into
our Customer database's Name field. The DEMO3 program is structured to accept keyboard input
from the user and when the user types in a customer's name and leaves the Text1 control
(LostFocus), the Customer database is searched (on the NAME field) for the name typed in by
the user. If the user typed name is not found, the remaning fields are cleared and we expect to
receive information for a new customer. If the user typed name is found in the database, the
remaing fields on the form are filled in with that customer's information.

 Let's look at the code in the Text1 LostFocus subroutine:
26

Sub Text1_LostFocus ()

 Dim status As Integer 'For error detection and correction
 Dim NewName As String 'Used to store new customer's name

 Customer.Field.FieldName = "Name" 'Field we wish to search on
 Customer.Field.FieldValue = Text1.Text 'Value we wish to search for
 Customer.Record.SearchMode = SEARCHFIRST 'Find the first matching record

 status = PutField(Customer) 'Submit the search criteria to the database engine

 status = SearchField(Customer) 'Start the search

 If (status <> 0) Then 'If search failed
 NewName = Text1.Text 'Put new name in NewName variable
 ClearButton_Click 'Clear the form
 Text1.Text = NewName 'Put the new name back on the Form
 Exit Sub 'Return
 End If

 If (status = 0) Then 'Search was successfull
 FillForm 'Put the customer's info on the Form
 End If

End Sub

 The last example program in the VBENGINE (version 1.0) working model distribution file set is
the DEMO4 example program. The DEMO4 program is pretty much the same as the DEMO3
program but it includes an example on how to read data from a database table and place that
data into a combo box for database sourced pick lists. The DEMO4 program will not be examined
in detail here, the source code is well commented. Look for the new subroutines
FillCustomerCombo and EmptyCustomerCombo in the Form's general section. For more
VBENGINE example programs and more detailed information on VBENGINE programming place
your order for a registered copy today. From time-to-time new versions of the VBENGINE working
model will be released. New example programs covering different aspects of VBENGINE
programming will be distributed therein.

VBENGINE Function Reference
AddKey
Description

Creates a primary or secondary index for a table.

Syntax

AddKey(TableName As String, NFields As Integer, FieldHandle As Integer, Mode As Integer)

Remarks

27

This function provides for the creation of key indexes (Primary and Secondary). The function accepts four
arguments described as follows:

TableName
An ASCII string which holds the name of the data table for which an index is to be made. This variable
should contain the table name, including any MSDOS PATH specifier. Note: do not include a file extension
(.DB).

NFields
This argument is of type integer and represents the number of fields you wish to make keyed fields for a
PRIMARY index and represents the first NFields contiguous fields. For SECONDARY indexes, this argument is
always set to 1.

FieldHandle
This is the field position in the table for the key field. For PRIMARY indexes this argument always has a
value of 1. If a SECONDARY index is being created, this argument should be set to the number of the field's
position in the table, i.e., the fieldhandle.

Mode
This argument is used to specify what type of index is being created
PRIMARY,SECONDARY,INCSECONDARY.

For a discussion on the types of indexes and keyed fields available see the topic of indexing in the
Database Fundamentals chapter in this manual. Upon a successfull return the AddKey function returns
an integer value of zero (0). In the event of an error, a non-zero integer error value is returned.

Example(s)

This example creates a PRIMARY Index:

Sub NewIndex1_Click ()

DIM status As Integer
DIM Table As String
DIM NumberOfFields As Integer
DIM FldHandle As Integer
DIM IndexMode As Integer

Table = "C:\Customer"
NumberOfFields = 1 ' Customer table will have only a single key field. The first field in the

' table, the Customer Name field.
FldHandle = 1 ' Primary index
IndexMode = PRIMARY

status = AddKey(Table, NumberOfFields, FldHandle, IndexMode)

End Sub

This example creates a SECONDARY index on the third field in the CUSTOMER table (City):

Sub NewIndex2_Click ()

DIM status As Integer
DIM Table As String
DIM NumberOfFields As Integer
DIM FldHandle As Integer
DIM IndexMode As Integer

Table = "C:\Customer"
NumberOfFields = 1
FldHandle = 3 ' Secondary index for the City field.
IndexMode = INCSECONDARY

status = AddKey(Table, NumberOfFields, FldHandle, IndexMode)
28

End Sub

AddPassword
Description

This function enters a password into the system.

Syntax

AddPassword(Password As String)

Remarks

If database engine resources have been protected by a password, users must provide the necessary
password to gain access to those resources. The AddPassword function call submits a password on your
applications behalf. Any database engine resources (Tables) which require the password are
automatically available for routine manipulation once that password has been submitted with the
AddPassword function call.

This function call requires a single argument of type String which is the ASCII representation of the
password. A sucessfull function call will return an integer value of zero (0), any error will return a non-zero
integer value.

See Also

RemovePassword

Example

Sub Password_Click ()

DIM result As Integer

status = AddPassword("Bryan sent me")

End Sub

AppendRecord
Description

This function appends a record to a database table.

Syntax

AppendRecord(Table As DataTable)

Remarks

This function writes (appends) the record specified in the DataTable argument variable to the database file.
If the database file is indexed the AppendRecord function works similar to the InsertRecord function call
29

and the record is inserted in the database file at a place specified by the index. If the database file is not
indexed the appended record is added to the end of the database file. In both cases the newly appended
record becomes the current record. Upon a successfull return the AppendRecord function returns an
integer value of zero (0). In the event of an error, a non-zero integer error value is returned.

See Also

InsertRecord, UpdateRecord, DeleteRecord.

Example

Sub AddRecord_Click ()

' A variable is dimensioned elsewhere in the program as:
' DIM Customer As DataTable

DIM status As Integer

status = AppendRecord(Customer) 'Append record to table

End Sub

ClearRecord
Description

This function clears out the current record for the specified database table.

Syntax

ClearRecord(Table As DataTable)

Remarks

This function clears the database engine's internal record information for the DataTable argument variable.
Specifically all internal information for the DRecord data structure is erased. It is a convienient way to
clear all the field values for a specific record and is functionally equivalent to calling the PutBlank function
for each and every field.Upon a successfull return the ClearRecord function returns an integer value of
zero (0). In the event of an error, a non-zero integer error value is returned.

See Also PutBlank

Example

Sub ClearRecord_Click ()

' a variable, declared elsewhere in this program was done like so:
' Dim Customer As DataTable

Dim status As Integer

status = ClearRecord(Customer)

End Sub

30

CloseEngine
Description

This function shuts-down the database engine environment.

Syntax

CloseEngine()

Remarks

When a Visual Basic Program is finished with the database engine and no further database processing is
required the program should make a CloseEngine function call to clean-up and free memory allocated by
the database engine environment. If a database was using table buffering (.Table.SaveEveryChange =
False) then all buffered data is saved to disk, all open tables closed, etc. before the database engine's
environment is shut-down. All programs should call CloseEngine when they are finished with database
processing. Upon a successfull return the CloseEngine function returns an integer value of zero (0). In the
event of an error, a non-zero integer error value is returned.

See Also

OpenEngine

Example

...

...

...
Dim status As Integer

status = CloseEngine()
...
...
...

CloseTable
Description

This function closes a previously opened database table.

Syntax

CloseTable(Table As DataTable)

Remarks

This function ensures that all buffered data is saved to disk and all memory allocated for the open table is
released when the table is properly closed. When a Visual Basic Program is finished with a database table
it should make a CloseTable call to insure that the table is properly closed and that no data is lost. Upon a
successfull return the CloseTable function returns an integer value of zero (0). In the event of an error, a

31

non-zero integer error value is returned.

See Also

OpenTable

Example

Sub CloseCustomer ()

'A DataTable variable was declared elsewhere in the table as:
'Dim Customer As DataTable

Dim status As Integer

status = CloseTable(Customer)

End Sub

CreateTable
Description

This function is used to create a new database table file.

Syntax

CreateTable(Table As NewTable)

Remarks

The CreateTable function accepts as an argument, a variable of Type NewTable (see VBENGINE Data
Structures).
You define the structure of the new database table through the NewTable data structure:

Type NewTable

TableName As String * 255
NFields As Integer
FieldNames As String * 6629
FieldTypes As String * 1529

End Type

You place the name of your new table in the TableName member. This member consists of a String type
which contains up to 255 characters. Here you place the name of your table, including any MSDOS PATH,
but do not include an MSDOS file extension.

You place the total number of fields in your new table in the NFields member. This member is an integer
and can have a maximum value of 255.

You place the names of your table's fields in the FieldNames member. This member is a String type which
contains up to 6629 characters. Your table's field names should be placed in this member in the same
order you expect them to be found in your table. Each field name is separated by a comma (,). The last
field name should not be terminated with a comma. Field names can themselves be a maximum of 25
characters in length.

You place the field types of your above defined fields in the FieldTypes member. This member is a String
type which contains up to 1529 characters. Your field types should be separated from one another by a
comma(,). The list of comma separated field types in the FieldTypes member string should follow a one-
to-one correspondence with the comma separated field names residing in the FieldNames member. A
field type can be a maximum of five characters and must consist of one of the following field types:

Field Type Data Type

 N Numeric
 S Short number

32

 $ Currency
 Annn Alphanumeric
 D Date

Upon a successfull return the CreateTable function returns an integer value of zero (0). In the event of an
error, a non-zero integer error value is returned.

Note: The total numer of bytes per record should not exceed 4000. If the table is to be keyed for a primary
index the limit is reduced down to 1350 bytes.

See Also

AddKey

Example

Sub NewCustomerTable ()

' The new CUSTOMER table will hold data for our customers and will have the following format:
' Field Name Data Type
'--
' Name A50
' Address A50
' City A30
' State A2
' Zip A10
' Phone A14
' Fax A14
' Cust As OF D
'

Dim Customer As NewTable 'variable of type NewTable for defining the new database table.
Dim status As Integer ' status will hold the result of function calls (error trapping)

Customer.TableName = "C:\CUSTOMER"
Customer.NFields = 8
Customer.FieldNames = "Name,Address,City,State,Zip,Phone,Fax,Cust As OF"
Customer.FieldTypes = "A50,A50,A30,A2,A10,A14,A14,D"

status = CreateTable(Customer)

End Sub

DecryptTable
Description

This function decrypts a previously encrypted table.

Syntax

DecryptTable(Table As DataTable)

Remarks

Database table files can be encrypted for security purposes. Once a table is encrypted using the
EncryptTable function call, encryption can only be removed via a DecryptTable Function call. A table is
encrypted through a password (see the EncryptTable function description), if you do not have password
rights (if you don't know the password) you can not successfully call DecryptTable. Upon a successfull
return the DecryptTable function returns an integer value of zero (0). In the event of an error, a non-zero
33

integer error value is returned.

See Also

EncryptTable

Example

Sub DecryptCustomer ()
'A variable was declared elsewhere in the program as:
'Dim Customer As DataTable

Dim status As Integer

status = DecryptTable(Customer)

End Sub

DeleteRecord
Description

This function deletes the current record from the database table.

Syntax

DeleteRecord(Table As DataTable)

Remarks

This function deletes the current record in the database table. The database table and the current record
are contained inside the passed DataTable argument. Upon a successfull return the DeleteRecord
function returns an integer value of zero (0). In the event of an error, a non-zero integer error value is
returned.

Example

...

...
' Customer is declared elsewhere in the program as:
'Dim Customer As DataTable

Dim status As Integer

status = DeleteRecord(Customer)
...
...

DeleteTable
Description

This function deletes a table and its associated family of objects.

Syntax

DeleteTable(Table As String)

Remarks

When this function is called to delete a table, it will, if successfull, delete the named table, indexes, forms,
34

reports, graphs, image settings and validity checks (see Tables and family objects in the Database
Fundamentals section of this manual). Upon a successfull return the DeleteTable function returns an
integer value of zero (0). In the event of an error, a non-zero integer error value is returned.

Example

...

...

...
Dim status As Integer

status = DeleteTable("C:\CUSTOMER")
...
...
...

EmptyTable
Description

This function removes all records from the specified table.

Syntax

EmptyTable(Table As String)

Remarks

When this function is called all records (information) present in the table is removed or erased leaving
nothing but an empty database table. Upon a successfull return the EmptyTable function returns an
integer value of zero (0). In the event of an error, a non-zero integer error value is returned.

Example

...

...

...
Dim status As Integer

status = EmptyTable("C:\CUSTOMER")
...
...
...

EncryptTable
Description

This function encrypts a database table.

Syntax

EncryptTable(Table As DataTable, Password As String)

Remarks

This function call, when successfull, encrypts the specified table. Once encrypted, the table can only be
accessed by users with access to the password. Tables are encrypted for purposes of security. Upon a
successfull return the EncryptTable function returns an integer value of zero (0). In the event of an error,
35

a non-zero integer error value is returned.

See Also

DecryptTable and Passwords and Security in the Database Fundamentals section of this manual.

Example

...

...

...
'A variable was declared elsewhere in the program as:
'Dim Customer As DataTable

Dim status As Integer

status = EncryptTable(Customer,"OMEGA")
...
...
...

FirstRecord
Description

This function positions the current record on the first record in the database table.

Syntax

FirstRecord(Table As DataTable)

Remarks

This function, if successfull, moves to the first record in the database table and makes that record the
current record. The database table and the current record for that table are passed in the DataTable
argument variable. Upon a successfull return the FirstRecord function returns an integer value of zero (0).
In the event of an error, a non-zero integer error value is returned.

See Also

LastRecord, NextRecord and PreviousRecord.

36

Example

Sub TableTop_Click ()

'A variable was declared elsewhere in the program as:
'Dim Customer As DataTable
Dim status As Integer

status = FirstRecord(Customer)

End Sub

FlushBuffers
Description

This function writes all buffered data to database table files.

Syntax

FlushBuffers()

Remarks

This function is a system level database engine process. It writes all buffered data to disk. If a DataTable
variable is set-up to buffer data (SaveEveryChange = FALSE) then database changes are not written
immediately to disk but are instead buffered generally to increase performance. Even if set-up for
buffering, you can force buffered data to be written to disk by calling FlushBuffers. Upon a successfull
return the FlushBuffers function returns an integer value of zero (0). In the event of an error, a non-zero
integer error value is returned.

See Also

SaveEveryChange in the VBENGINE Data Structure Definition section of this manual.

Example
...
status% = FlushBuffers()
...

GetField
Description

This function reads the value of a specified field from the current record of a database table.

Syntax

GetField(Table As DataTable)

Remarks

This function call reads the value of the field specified by Table.Field.FieldName and places that field's
value in Table.Field.FieldValue. The field value read is that of the current record in the database table of
the Table (DataTable) argument passed to the function. All field values placed in Table.Field.FieldValue
are of type string regardless of the actual data type stored in the table itself. Upon a successfull return the
GetField function returns an integer value of zero (0). In the event of an error, a non-zero integer error
value is returned. The steps required to read a particular field value from a database table and place that
information in a Visual Basic Text Box are shown below:

Example

37

Sub GetAField ()

Dim Customer As DataTable 'Create a DataTable variable to manipulate a
database file.
Dim status As Integer 'Variable for error handling..

'Set-up the Customer DataTable variable to access the database file.
Customer.Table.TableName = "C:\Customer" 'We will use the C:\CUSTOMER.DB database file.
Customer.Table.IndexID = MASTERINDEX 'We will view the database through its Primary index.
Customer.Table.SaveEveryChange = FALSE 'We will buffer any changes to disk.

'OK, the DataTable variable is set up for Table specific access.
'Now lets initialize the database engine. We will assume that all will go well and will not complicate this
example
'with specific error handling code.

status = OpenEngine("Visual Basic Program")

'Ok the database engine is now up and running, now lets open up our database table:

status = OpenTable(Customer)

'Ok, our table is open, lets get the first record in the Customer table:

status = GetRecord(Customer)

'Now we want to get the NAME of our customer in record#1 and place it in our Text1 control:

Customer.Field.FieldName = "Name" 'Customer name is stored in a field called Name.

'Now get the customer's name:

status = GetField(Customer)

'Ok the customer's name is now in Customer.Field.FieldValue.
'Let's put it in the TextBox

Text1.Text = Customer.Field.FieldValue
'Ok, a job well done. Lets stop, we will need to close our table, and the database engine before we quit:

status = CloseTable(Customer) 'Close the database.
status = CloseEngine() 'Close the database engine

End Sub

GetFieldType
Description

This function returns the data type for a database field.

Syntax

GetFieldType(Table As DataTable)

Remarks

This function call returns the data type of the field specified in Table.Field.FieldName. You use this
function when you wish t determine the actual data type of the field as it is stored in the database table. �
The possible data types returned are as follows:

Field Type Data Type

 N Numeric

38

 S Short number
 $ Currency
 Annn Alphanumeric
 D Date

The field type is returned i~ Table.Field.FieldType. Upon a successfull return the GetFieldType function
returns an integer value of zero (0). In the event of an error, a non-zero integer error value is returned.

Example

...

...

...
'A variable was declared elsewhere in this program as:
'Dim Customer As DataTable

Dim status As Integer

Customer.Field.FieldName = "Name" 'Determine the data type of the Name field.
status = GetFieldType(Customer) 'Get the field type
Text1.Text = Customer.Field.FieldType 'Now display the field type in the Text1 control.

...

...

...

GetRecord
Description

This function reads the current record in the database table.

Syntax

GetRecord(Table As DataTable)

Remarks

This function, if successfull, reads the current record in the database table.The database table and the
current record for that table are passed in the DataTable argument variable. Upon a successfull return the
GetRecord function returns an integer value of zero (0). In the event of an error, a non-zero integer error
value is returned.

See Also

FirstRecord, LastRecord, NextRecord and PreviousRecord.

Example

Sub GetCustomer_Click ()

'A variable was declared elsewhere in the program as:
'Dim Customer As DataTable
Dim status As Integer

status = GetRecord(Customer)

End Sub

GetRecordNumber

39

Description

This function returns the database record number of the current record.

Syntax

GetRecordNumber(Table As DataTable, RecordNumber As Long)

Remarks

The GetRecordNumber function returns the record number of the current record. The current record and
database table are held in the DataTable argument. The record number is returned in the RecordNumber
argument. The RecordNumber variable must be of type Long. Upon a successfull return the
GetRecordNumber function returns an integer value of zero (0). In the event of an error, a non-zero
integer error value is returned.

Example

Function GetRecNumber(Table As DataTable) As Long

Dim status As Integer
Dim RecordNumber As Long

status = GetRecordNumber(Table,RecordNumber)
'do error handling here.

GetRecNumber = RecordNumber

End Function

GetUserName
Description

This function returns the name of the database engine user.

Syntax

GetUserName(UserName As String)

Remarks

The GetUserName function returns the name of the database engine user. The user name is placed in the
UserName function argument variable of type String. Upon a successfull return the GetUserName
function returns an integer value of zero (0). In the event of an error, a non-zero integer error value is
returned.

Example

...

...

...
Dim status As Integer
Dim UserName As String

status = GetUserName(UserName)
...
...
...

GotoRecord

40

Description

Goes to the specified record number in the database table and makes that record the current record.

Syntax

GotoRecord(Table As DataTable, RecordNumber As Long)

Remarks

This function moves to the RecordNumber record in the database table and makes that record the current
record.

Example

Sub GotoRec (RecordNumber As Long)

'A variable was declared elsewhere in this program as:
'Dim Customer As DataTable
Dim status As Integer

status = GotoRecord(Customer,RecordNumber

End Sub

InsertRecord
Description

This function inserts a record into the database table file.

Syntax

InsertRecord(Table As DataTable)

Remarks

This function inserts a record into the database table file. If the database file is indexed the InsertRecord
function works similar to the AppendRecord function call and the record is inserted in the database file at
a location specified by the index. If the database file is not indexed the new record is inserted before the
current record. In both cases the newly inserted record becomes the current record. Upon a successfull
return the InsertRecord function returns an integer value of zero (0). In the event of an error, a non-zero
integer error value is returned.

See Also

AppendRecord, UpdateRecord, DeleteRecord.

Example

Sub InsrtRecord_Click ()

' A variable is dimensioned elsewhere in the program as:
' DIM Customer As DataTable

DIM status As Integer

status = InsertRecord(Customer) 'Insert record to table

End Sub

41

IsFieldBlank
Description

This function determines whether or not a field is blank.

Syntax

IsFieldBlank(Table As DataTable, Blank As Integer)

Remarks

This function tests a field's value and indicates whether or not the field is blank. If the field's value is
indeed blank, the Blank argument variable is set to a non-zero falue. If the field's value is not blank, the
Blank argument variable is set FALSE (0). Blank field values represent "values not yet entered" and are
valid values for all database table data types. Upon a successfull return the IsFieldBlank function returns
an integer value of zero (0). In the event of an error, a non-zero integer error value is returned.

Example

Function IsFldBlank (Table As DataTable) As Integer

Dim status As Integer
Dim BlankStatus 'Set False if field is not blank.

status = IsFieldBlank(Table, BlankStatus)
'do any error handling here

IsFldBlank = BlankStatus

End Function

IsRecordLocked
Description

This function tests to see if the current record is locked.

Syntax

IsRecordLocked(Table As DataTable, Locked As Integer)

Remarks

This function performs a test to see if the current database record is locked. If the current record is locked,
the Locked argument variable is set to a non-zero value. If the current record is not locked the Locked
argument variable is set to False (0). Upon a successfull return the IsRecordLocked function returns an
integer value of zero (0). In the event of an error, a non-zero integer error value is returned.

See Also

LockRecord

Example

Function RecordLocked (Table As DataTable) As Integer

Dim status As Integer
Dim Locked As Integer

status = IsRecordLocked(Table, Locked)
'do IsRecordLocked error handling here.

42

RecordLocked = Locked

End Function

LastRecord
Description

This function moves to the last record in the database table.

Syntax

LastRecord(Table As DataTable)

Remarks

This function moves to the last record in the database table and makes that record the current record. The
database table is specified in the Table argument. The Table must have been successfully opened with a
previous call to OpenTable. Upon a successfull return the LastRecord function returns an integer value of
zero (0). In the event of an error, a non-zero integer error value is returned.

See Also

FirstRecord, NextRecord and PreviousRecord

Example

...

...

...
'A variable was declared elsewhere in the program as:
'Dim Customer As DataTable

Dim status As Integer

status = LastRecord(Customer) 'move to the last record in the table specified by Customer.
'd LastRecord error handling here.� 'status holds the return vlaue of the LastRecord
function call.

...

...

...

LockRecord
Description

This function locks the current database record.

Syntax

LockRecord(Table As DataTable)

Remarks

This function locks the current record. The database table and it's current record are specified by the Table
argument variable. Once the record is successfully locked, no other users are able to delete, or otherwise
write to the record until the record is unlocked with a call to the UnlockRecord function call. Upo~ a
43

successfull return the LockRecord function returns an integer value of zero (0). In the event of an error, a
non-zero integer error value is returned.

See Also

UnlockRecord

Example

...

...

...
'A variable was declared elsewhere in the program as:
'Dim Customer As DataTable

Dim status As Integer

status = LockRecord(Customer)
'do LockRecord error handling here.
...
...
...

LockTable
Description

This function locks a database table.

Syntax

LockTable(Table As DataTable, LockType As Integer)

Remarks

This function locks a database table with the lock type specified by the LockType argument. The LockType
can be one of the following:

- FULLLOCK (Place a read/write lock on the table)
- WRITELOCK (Place a write lock on the table)
- PREVENTWRITELOCK (Prevent write locking on a table)

Once successfully locked, the lock is in effect until a call to the UnlockTable function call (with the same
Table and LockType arguments) is made to release the lock. You can place more than one lock on a table.
Certain types of locks take precedence over others. A FULLLOCK overrides a WRITELOCK. As you might
expect, if one user placed a PREVENTWRITELOCK on a table, another user would not be able to
successfully place a WRITELOCK on the same table. Upon a successfull return the LockTable function
returns an integer value of zero (0). In the event of an error, a non-zero integer error value is returned.

See Also

UnlockTable

Example

...

...

...
'A variable was declared elsewhere in the program as:
'Dim Customer As DataTable

Dim status As Integer

44

status = LockTable(Customer, PREVENTWRITELOCK) 'Prevent other users from placing table based locks.
'do LockTable function error handling here.

...

...

...

NRecords
Description

Returns the number of records present in the database table.

Syntax

NRecords(Table As DataTable, NRecords As Long)

Remarks

This function returns the total number of records present in the database table specified in the Table
argument. The number of records is placed in the NRecords argument variable. Upon a successfull return
the NRecords function returns an integer value of zero (0). In the event of an error, a non-zero integer
error value is returned.

Example

...

...

...
'A variable was declared elsewhere in the program as:
'Dim Customer As DataTable

Dim status As Integer
Dim Records As Long

status = NRecords(Customer, Records) 'Get the number of records in the database
Text1.Text = Str$(Records) 'Display the number of records in a Visual Basic Text box
control.
...
...
...

NextRecord
Description

This function moves to the next record in the database table.

Syntax

NextRecord(Table As DataTable)

Remarks

This function moves to the next record in the database table and makes that record the current record. The
database table is specified in the Table argument. Upon a successfull return the NextRecord function
returns an integer value of zero (0). In the event of an error, a non-zero integer error value is returned.

See Also

FirstRecord, LastRecord, and PreviousRecord.
45

Example

...

...

...
'A variable was declared elsewhere in the program as:
'Dim Customer As DataTable

Dim status As Integer

status = NextRecord(Customer) 'Move to the next record in the database
'do any error handling here.
...
...
...

OpenEngine
Description

This function initializes the database engine for subsequent database operations.

Syntax

OpenEngine(ApplicationName As String)

Remarks

This function initializes the database engine environment and must be successfully called before any other
database function can be performed. This function sets-up the database engine, allocates memory and
various other internal database engine environmental settings. The ApplicationName argument variable of
type String should contain the name of your application program. When you are finished with databse
engine processing, you should call the CloseEngine function to perfom housekeeping clean-up for the
database engine environment. Upon a successfull return the OpenEngine function returns an integer
value of zero (0). In the event of an error, a non-zero integer error value is returned.

See Also

CloseEngine

Example

Function SetupDatabaseEngine (ProgramName As String) As Integer

Dim status As Integer

status = OpenEngine(ProgramName) 'Initialize the database engine environment.

SetupDatabaseEngine = status

End Function

OpenTable
Description

46

This function opens a database table file for subsequent processing.

Syntax

OpenTable(Table As DataTable)

Remarks

Before you can process information in a database table file, you must first open that file for processing. You
open database table files by calling the OpenTable function. To successfully open a database table you
will need to specify three parameters in the Table DataTable argument (for more information on the
DataTable data structure see the VBENGINE Data Structure Definition section in this manual):

Table.Table.TableName =
Table.Table.IndexID =
Table.Table.SaveEveryChange =

Table.Table.TableName should hold the name of the database table file including any MSDOS PATH
specifier. Do not include the file extension.

Table.Table.IndexID should specify the index you wish to use for table operations. MASTERINDEX
should be used to open the table with all of it's associated indexes. For a specific index, specify the field
number of the associated index.

Table.Table.SaveEveryChange should specify whether you wish to save every change to disk or
whether you wish to buffer changes to disk. Buffering is faster, but you may lose data if the power goes
out (see FlushBuffers for information on writing buffered data to disk). To buffer changes set this
parameter to FALSE.

Once these three DataTable parameters have been appropriately set, call OpenTable to open the
database table. Upon a successfull return the OpenTable function returns an integer value of zero (0). In
the event of an error, a non-zero integer error value is returned.

See Also

CloseTable, FlushBuffers, and CloseEngine.

Example

...

...

...
Dim Customer As DataTable 'Declare a variable of type DataTable to interface

' with the database file.

Dim status As Integer 'Declare a variable to hold VBENGINE function call results.

Customer.Table.TableName = "C:\Customer" 'Specify the data table file name, include PATH specifier C:\
Customer.Table.IndexID = MASTERINDEX 'We will use all table indexes.
Customer.Table.SaveEveryChange = FALSE 'We will buffer data changes to disk for performance reasons.

status = OpenTable(Customer) 'Ok, open it up!

...

...

...

PreviousRecord

47

Description

This function moves to the previous record in the database table.

Syntax

PreviousRecord(Table As DataTable)

Remarks

This function moves to the previous record in the database table and makes that record the current record.
The database table is specified in the Table argument. Upon a successfull return the PreviousRecord
function returns an integer value of zero (0). In the event of an error, a non-zero integer error value is
returned.

See Also

FirstRecord, LastRecord, and NextRecord.

Example

...

...

...
'A variable was declared elsewhere in the program as:
'Dim Customer As DataTable

Dim status As Integer

status = PreviousRecord(Customer) 'Move to the previous record in the database
'do any error handling here.
...
...
...

PutBlank
Description

This function places a blank value into the specified field in the database record.

Syntax

PutBlank(Table As DataTable)

Remarks

This function places a blank value into the field specified in the Table argument (Table.Field.FieldName).
The field value is not written to the database table until the record is written to disk using either
InsertRecord, AppendRecord, or UpdateRecord. A blank value of the appropriate data type is placed
in the field automatically. A blank value is a valid value which represents the fact that the value has yet to
be entered (a blank value is not zero.) Upon a successfull return the PutBlank function returns an integer
value of zero (0). In the event of an error, a non-zero integer error value is returned.

See Also

IsFieldBlank

Example

48

...

...

...
'A variable was declared elsewhere in the program as:
'Dim Customer As DataTable

Dim status As Integer

Customer.Field.FieldName = "Address" 'We will put a blank value in the Address field.
status = PutBlank(Customer) 'Move to the previous record in the database
'do any error handling here.
...
...
...

PutField
Description

This function places a field value into the specified field in the database record.

Syntax

PutField(Table As DataTable)

Remarks

This function places the value found in Table.Field.FieldValue for the field Table.Field.FieldName
into the database record. The record in the database table file is not actually modified until a call to
InsertRecord, AppendRecord, or UpdateRecord is called. The table and record for the operation is
specified by the Table argument variable. All field values to be written to a database field are placed in
Table.Field.FieldValue and are of type String regardless of the actual data type of the field in the
database table itself. The PutField function automatically converts the value to the appropriate type
before placing it in the database record. Upon a successfull return the PutField function returns an integer
value of zero (0). In the event of an error, a non-zero integer error value is returned. The steps required to
store a Visual Basic text string into a field in a database table are shown below:

See Also

GetField, PutBlank.

Example

Sub PutAField ()

Dim Customer As DataTable 'Create a DataTable variable to manipulate a
database file.
Dim status As Integer 'Variable for error handling..

'Set-up the Customer DataTable variable to access the database file.
Customer.Table.TableName = "C:\Customer" 'We will use the C:\CUSTOMER.DB database file.
Customer.Table.IndexID = MASTERINDEX 'We will view the database through its Primary index.
Customer.Table.SaveEveryChange = FALSE 'We will buffer any changes to disk.

'OK, the DataTable variable is set up for Table specific access.
'Now lets initialize the database engine. We will assume that all will go well and will not complicate this
example
'with specific error handling code.

status = OpenEngine("Visual Basic Program")

'Ok the database engine is now up and running, now lets open up our database table:

49

status = OpenTable(Customer)

'Ok, our table is open, lets get the first record in the Customer table:

Customer.Field.FieldName = "Name" 'Customer name is stored in a field called Name.

status = GetRecord(Customer) 'Tables are automatically at the first record when
initially opened.

'Now get the customer's name from a Visual Basic Text control.

Customer.Field.FieldValue = Text1.Text 'Get the value from a Text box control.

'Ok the customer's name is no in Customer.Field.FieldValue.�
'Let's put it in the Database

status = PutField(Customer) 'Place the field in the record
status = UpdateRecord(Customer) 'Update the record

'Ok, a job well done. Lets stop, we will need to close our table, and the database engine before we quit:

status = CloseTable(Customer) 'Close the database.
status = CloseEngine() 'Close the database engine

End Sub

RefreshTable
Description

This function refreshes or updates a table image to reveal up-to-the minute changes.

Syntax

RefreshTable(Table As DataTable)

Remarks

This function updates the table image to reflect any changes to data that other users may have made
since your last table refresh. The following functions automatically refresh a table image RecordLock,
UpdateRecord, InsertRecord, AppendRecord, and DeleteRecord. Upon a successfull return the
PutField function returns an integer value of zero (0). In the event of an error, a non-zero integer error
value is returned.

Example

...

...

...
'A variable was declared elsewhere in the program as:
'Dim Customer As DataTable

Dim status As Integer

status = RefreshTable(Customer)
...
...
...

50

RemoveKey
Description

This function deletes a specified database index.

Syntax

RemoveKey(TableName As String, IndexID As Integer)

Remarks

This function removes or deletes a database index. The index to be removed is specified by the IndexID
argument. If IndexID = 0 (PRIMARY) then the Primary as well as all Secondary indexes will be removed
since Secondary indexes are based on the Primary index. The IndexID should equal the field number of the
index to be removed.

If a database table (C:\EXAMPLE) has three fields; Number (1), Name (2) and Phone number (3) (in that
order), the Number field is the only key field in the Primary index, and there are secondary indexes (1 for
name and 1 for Phone number). To remove the Secondary index for the Phone number field the function
would be called as:

status = RemoveKey("C:\EXAMPLE",3)

When this function is called, a FULLLOCK is placed on the table during the idex removal process . If the
lock attempt fails, so does the function call. Upon a successfull return the RemoveKey function returns an
integer value of zero (0). In the event of an error, a non-zero integer error value is returned.

See Also

AddKey

Example

...

...

...
Dim status As Integer

status = RemoveKey("C:\CUSTOMER",2)
...
...
...

RemovePassword
Description

Removes a password from the database engine environment.

Syntax

RemovePassword(Password As String)

Remarks

If database engine resources have been protected by a password, users must provide the necessary
password to gain access to those resources. The AddPassword function call submits a password on your
applications behalf. Any database engine resources (Tables) which require the password are
automatically available for routine manipulation once that password has been submitted with the
AddPassword function call. The RemovePassword function removes the password from the system. Any
51

resources you had access to through the password are then unavailable once the password has been
removed via the RemovePassword function call. Upon a successfull return the RemovePassword
function returns an integer value of zero (0). In the event of an error, a non-zero integer error value is
returned.

See Also

AddPassword

Example

Sub RMPassword_Click ()

DIM result As Integer

status = RemovePassword("Bryan sent me")

End Sub

SearchField
Description

This function searches a database table file on a specified field.

Syntax

SearchField(Table As DataTable)

Remarks

This function searches through the database table for a value in a field. The database field searched on is
specified by Table.Field.FieldName the field value to search for is specified by Table.Field.FieldValue.
You need to set these two parameters or data structure members and then call the PutField function.
After that you need to specify your search mode preference by setting Table.Record.SearchMode to one
of three values:

- SEARCHFIRST
- SEARCHNEXT
- CLOSESTRECORD

SEARCHFIRST begins the search at the first record in the database, the record position of the current
record is not changed if a search attempt fails to find a match.

SEARCHNEXT begins with the record following the current record in the database, the record position of
the current record is not changed if a search attempt fails to find a match.

CLOSESTRECORD begins to search at the first record in the database, if a record is not found (search
attempt fails), one of two possibilities exist:

-If there is no exact match, there happens to be a record which has a value lexically greater than the
search value. The current record in the database will be the record with the first such instance and a record
not found error (89) returned.

- There is no record in the database that has a value greater or equal to the search value. The current
record will be the last record in the database and a record not found error (89) returned.

A search can then be started with a call to the SearchField function.

52

The available search modes rely on the index on which the table is currently using. SearchField always
searches for the first record which fullfills the search criteria. On non-indexed database tables SearchField
searches via a sequential scan. The order of the records searched through the sequntial scan is that of the
physical order of the records in the table itself. In non-indexed tables CLOSESTRECORD is not supported.
Upon a successfull return the SearchField function returns an integer value of zero (0). In the event of an
error, a non-zero integer error value is returned.

See Also

SearchKey

Example

'This example searches the Customer database for a specific customers name.
'The data for the Customer table is passed in the Customer argument of type DataTable.
'The customer name to search for is passed in the CustomerName argument of type String.

Function CustomerSearch(Customer As DataTable, CustomerName As String) As Integer
Dim status As Integer

Customer.Field.FieldName = "Name" 'We will search on the Name field.
Customer.Field.FieldValue = CustomerName 'For the name in CustomerName string.
Customer.Record.SearchMode = SEARCHFIRST 'Start searching from the first record.

status = PutField(Customer) 'Submit the search criteria.
'do any desired error handling for the PutField function call here

status = SearchField(Customer) 'Start the search.
'do any desired error handling for the SearchField function call here

CustomerSearch = status 'Return the search status

End Function

SearchKey
Description

This function searches a database table for a key match.

Syntax

SearchKey(Table As DataTable)

Remarks

This function searches the table specified in Table.Table.TableName on the Primary index. A search
match is sought on the key field(s) of the table specified by Table.Record.SearchKey. The key to be
matched must be the primary key or a subset of the primary key. The fields to be matched are the fields
which have been placed into the database engine's record buffer via calls to PutField.

If there are five key fields and you are only interested in finding records which have specific values in the
first two key fields lets say "Date" and "Customer Name", you want to search for records in the database
that have 12/12/92 for the "Date" value and "Robert Smith" for the "Customer Name" you would set the
criteria for those fields and place them in the database engine via calls to PutField. Your KeySearch would
be set up as Table.Record.KeySearch = 2.

You need to specify your search mode preference by setting Table.Record.SearchMode to one of three
values:

- SEARCHFIRST

53

- SEARCHNEXT
- CLOSESTRECORD

SEARCHFIRST begins the search at the first record in the database, the record position of the current
record is not changed if a search attempt fails to find a match.

SEARCHNEXT begins with the record following the current record in the database, the record position of
the current record is not changed if a search attempt fails to find a match.

CLOSESTRECORD begins to search at the first record in the database, if a record is not found (search
attempt fails), one of two possibilities exist:

-If there is no exact match, there happens to be a record which has a value lexically greater than the
search value. The current record in the database will be the record with the first such instance and a record
not found error (89) returned.

- There is no record in the database that has a value greater or equal to the search value. The current
record will be the last record in the database and a record not found error (101) returned.

The available search modes rely on the index on which the table is currently using. SearchKey always
searches for the first record that fullfills the search criteria. Once the desired key fields have been set-up
and submitted via calls to PutField, the desired search mode specified, along with the keysearch
specification, you can then call SearchKey. Upon a successfull return the SearchKey function returns an
integer value of zero (0). In the event of an error, a non-zero integer error value is returned.

See Also

SearchField and Database Searching in the Database Fundamentals section of this manual.

Example

'This example searches the Customer database for a specific customers name.
'The data for the Customer table is passed in the Customer argument of type DataTable.
'The customer name to search for is passed in the CustomerName argument of type String.

Function CustomerSearch(Customer As DataTable, CustomerName As String) As Integer
Dim status As Integer

Customer.Field.FieldName = "Name" 'We will search on the Name field.
Customer.Field.FieldValue = CustomerName 'For the name in CustomerName string.
Customer.Record.SearchMode = SEARCHFIRST 'Start searching from the first record.
Customer.Record.KeySearch = 1 'Customer name field only keyed field in table

status = PutField(Customer) 'Submit the search criteria.
'do any desired error handling for the PutField function call here

status = SearchKey(Customer) 'Start the search.
'do any desired error handling for the SearchKey function call here

CustomerSearch = status 'Return the search status

End Function

UnlockRecord
Description

This function unlocks a previously locked record.

54

Syntax

UnlockRecord(Table As DataTable)

Remarks

This function unlocks a previously locked record. You are only able to unlock records that you have
previously locked. You can not unlock records locked by other users. A locked record can also be unlocked
under the following conditionss:

- You delete the record by calling DeleteRecord.

- You call CloseTable which unlocks all the records in that table before closing the table.

- You call CloseEngine which unlocks all records in your tables.

Upon a successfull return the UnlockRecord function returns an integer value of zero (0). In the event of
an error, a non-zero integer error value is returned.

See Also

LockRecord

Example

...

...

...
'A variable was declared elsewhere in this program as:
'Dim Customer As DataTable

Dim status As Integer

status = LockRecord(Customer) 'Lock the Record

If (status = 0) Then 'If locked, then unlock

status = UnlockRecord(Customer)
End If
...
...
...

UnlockTable
Description

This function unlocks a previously locked table.

Syntax

UnlockTable(Table As DataTable, LockType As Integer)

Remarks

This function unlocks a previously locked database table. The target table is specified by
Table.Table.TableName. To unlock the table the LockType argument must be the same value used when
locking the table. The LockType can be one of the following:

- FULLLOCK (Place a read/write lock on the table)
- WRITELOCK (Place a write lock on the table)

55

- PREVENTWRITELOCK (Prevent write locking on a table)

Once successfully locked, the lock is in effect until a call to the UnlockTable function (with the same Table
and LockType arguments) is made to release the lock. You can place more than one lock on a table.
Certain types of locks take precedence over others. A FULLLOCK overrides a WRITELOCK. As you might
expect, if one user placed a PREVENTWRITELOCK on a table, another user would not be able to
successfully place a WRITELOCK on the same table. Upon a successfull return the UnlockTable function
returns an integer value of zero (0). In the event of an error, a non-zero integer error value is returned.

See Also

LockTable

Example

...

...

...
'A variable was declared elsewhere in the program as:
'Dim Customer As DataTable

Dim status As Integer

status = LockTable(Customer, PREVENTWRITELOCK) 'Lock the table
'do LockTable function error handling here.

status = UnlockTable(Customer, PREVENTWRITELOCK) 'Now unlock it
'do UnlockTable function error handling here.

...

...

...

UpdateRecord
Description

This function updates a record in a database table.

Syntax

UpdateRecord(Table As DataTable)

Remarks

This function updates the record specified in the DataTable argument variable to the database file. There
must be a current database record to update. Upon a successfull return the UpdateRecord function
returns an integer value of zero (0). In the event of an error, a non-zero integer error value is returned.

See Also

AppendRecord, InsertRecord, DeleteRecord.

Example

Sub UpdateRecord_Click ()

' A variable is dimensioned elsewhere in the program as:
' DIM Customer As DataTable

DIM status As Integer

56

status = UpdateRecord(Customer) 'Append record to table

End Sub

VBENGINE / PARADOX ENGINE
ERROR CODES

Error Code Description

1 Drive not ready
2 Directory not found
3 File is busy
4 File is locked
5 File not found
6 Table damaged
7 Primary index damaged
8 Primary index is out of date
9 Record is locked
10 Sharing violation - directory busy
11 Sharing violation - directory locked
12 No access to directory
13 Sort for index different from table
14 Single user but directory is shared
15 Multiple PARADOX.NET files found
21 Insufficient password rights
22 Table is write-protected
30 Data type mismatch
31 Argument is out of range
33 Invalid argument
40 Not enough memory to complete operation
41 Not enough disk space to complete operation
50 Another user deleted record
70 No more file handles available
72 No more table handles available
73 Invalid date given
74 Invalid field name
75 Invalid field handle
76 Invalid table handle
78 Engine not initialized
79 Previous fatal error, cannot proceed
81 Table structures are different
82 Engine already initialized
83 Unable to perform operation on open table
86 No more temporary names available
89 Record was not found
94 Table is indexed
95 Table is no| indexed
96 Secondary index is out of date
97 Key violation
98 Could not login on network
99 Invalid table name
101 End of table
102 Start of table
103 No more record handles available
104 Invalid record handle
105 Operation on empty table
106 Invalid lock code
107 Engine not initialized
108 Invalid file name

57

109 Invalid lock
110 Invalid lock handle
111 Too many locks on table
112 Invalid sort-order table
113 Invalid net type
114 Invalid directory name
115 Too many passwords specified
116 Invalid password
117 Buffer too small for result
118 Table is busy
119 Table is locked
120 Table was not found
121 Secondary index was not found
122 Secondary index is damaged
123 Secondary index is already open
124 Disk is write-protected
125 Record is too big for index
126 General hardware error
127 Not enough stack space to complete operation
128 Table is full
129 Not enough swap buffer space to complete operation
130 Table is SQL replica
131 Too many clients for Engine DLL
132 Exceeds limits specified in WIN.INI
133 Too many files open simultaneously (includes all clients)
134 Can't lock PARADOX.NET - is SHARE.EXE loaded
135 Can't run Engine in Windows real mode
136 Can't modify unkeyed table with non-maintained secondary index

58

